
Database Design Proposal
Christopher Lee

Disclaimer: The ctOS and Blume logos
are owned by Ubisoft Montreal.



 Christopher Lee 2

Table of Contents

Executive Summary....................................................................................................................3

Entity Relationship Diagram.......................................................................................................4

Tables.........................................................................................................................................5

View Definitions........................................................................................................................26

Reports and Queries.................................................................................................................29

Stored Procedures....................................................................................................................31

Triggers.....................................................................................................................................33

Security.....................................................................................................................................34

Implementation Notes...............................................................................................................36

Known Problems.......................................................................................................................36

Future Enhancements...............................................................................................................36



 Christopher Lee 3

The Central Operating System (ctOS) is 
responsible for the management and facilitation 
of the city of Chicago and its over 2.7 million 
citizens. The city of Chicago requires a database 
to catalogue the various functionalities controlled 
by the operating system. Due to federal 
regulations, the data must be accurate and 
consistent.

This document outlines the structure and entities 
involved in the design and implementations of a 
database system for ctOS. The purpose of this 
database is to enable cataloging of the various 
functionalities of the operating system such as 
management of the roadways, the electric grid, 
the subway system, the security camera system, 
the citizen Profiler, and more. 

This database will allow administration to create 
useful information from queries that provide 
valuable statistics and other facts from the 
catalogued data. 

An overview of the database will be presented, 
followed by the details of every individual 
database table for each of the systems managed 
by ctOS. Purposes of each table will be 
suggested and triggers will be explained to 
reinforce the data integrity of the database. For 
each of the individual parts, sample reports will 
be shown. 

This design was targetted for and tested on 
PostgreSQL 9.4.1, released on Feb 5, 2015. 

Executive Summary



 Christopher Lee 4



 Christopher Lee 5

Infrastructure Table: Stores valid, unique identification numbers for the city's various 
infrastructure such as bridges, traffic lights, electric grid, etc.

CREATE TABLE IF NOT EXISTS infrastructure (
    ifst_id SERIAL NOT NULL UNIQUE,
    type VARCHAR(25) NOT NULL,
    description VARCHAR(50) NOT NULL,
    PRIMARY KEY (ifst_id)
);

Functional Dependencies
ifst_id -> type, description

ifst_id type description

1 Bridge Washington Bridge

2 Traffic Light Brown St and Park Ave

3 Transformer 152 Pensacola St

4 Security Camera 29 Myers Rd

5 Traffic Light Atkins St and Bay Ave

6 Bridge Bayview Bridge

7 Transformer 2 Blake Ct



 Christopher Lee 6

Bridges Table: Contains the list of bridges crossing the Chicago River. Type refers to the bridge's 
structure or any other significant descriptions.

CREATE TABLE IF NOT EXISTS bridges (
    bridge_id SERIAL NOT NULL,
    name VARCHAR(50) NOT NULL,
    type VARCHAR(25) NOT NULL,
    length VARCHAR(25) NOT NULL,
    daily_traffic INTEGER NOT NULL,
    year_opened INTEGER NOT NULL,
    PRIMARY KEY (bridge_id)
);

Fuctional Dependencies
bridge_id -> name, type, length, daily_traffic, year_opened

bridge_id name type length daily_traffic year_opened

1 Michigan Avenue Bridge bascule 339 ft 49600 1920

2 La Salle Street Bridge bascule 242 ft 12050 1928

3 Nichols Bridgeway pedestrian 620 ft 8200 2009

4 Clark Street Bridge bascule 346 ft 72830 1929

5 BP Pedestrian Bridge pedestrian 935 ft 17890 2004

6 Outer Drive Bridge bascule 480 ft 40000 1937

7 Sky Ride ferry 3200 ft 65000 1933

8 Kinzie Street Bridge bascule 196 ft 0 1908



 Christopher Lee 7

Traffic_Lights Table

CREATE TABLE IF NOT EXISTS traffic_lights (
    tlight_id SERIAL NOT NULL,
    location VARCHAR(50) NOT NULL,
    last_maintained DATE NOT NULL,
    PRIMARY KEY (tlight_id)
);

Functional Dependencies
tlight_id -> location, last_maintained 

tlight_id location last_maintained

1 Brown St and Park Ave 2007-04-27

2 N Kennedy St and Fairbanks Ct 2009-06-16

3 Meyer Ave and Damien Ave 2010-07-02

4 Atkins St and Bay Ave 2008-02-09

5 W 38 St and Kemper Pl 2013-05-18

6 N Emmett St and Felton Ave 2015-05-01

7 S Independence Blvd and 29 St 2014-12-12



 Christopher Lee 8

Security_Cameras Table: The location of security cameras are usually in intersections, but can 
be located at the end of certain streets. In this situation, the precise address is recorded.

CREATE TABLE IF NOT EXISTS security_cameras (
    cam_id SERIAL NOT NULL,
    location VARCHAR(50) NOT NULL,
    last_maintained DATE NOT NULL,
    PRIMARY KEY (cam_id)
);

Functional Dependencies
cam_id -> location, last_maintained 

cam_id location last_maintained

1 S Ingleside Ave and Raven Rd 2014-03-17

2 492 Bandle Pl 2007-05-11

3 Lawndale Ave and Princeton Ave 2010-07-02

4 Quinn St and S Prospect Ave 2009-01-02

5 Atkins St and Bay Ave 2011-05-16

6 12 W 89th St 2008-11-01

7 N Kennedy St and Fairbanks Ct 2013-10-12



 Christopher Lee 9

Transformers Table

CREATE TABLE IF NOT EXISTS transformers (
    transformer_id SERIAL NOT NULL,
    location VARCHAR(50) NOT NULL,
    last_maintained DATE NOT NULL,
    PRIMARY KEY (transformer_id)
);

Functional Dependencies
transformer_id -> location, last_maintained 

transformer_id location last_maintained

1 42 Riverside Rd 2015-02-14

2 132 Park Ave 2013-12-03

3 4 N Kennedy St 2008-09-12

4 92 Emmett St 2010-10-10

5 1439 Atkins St 2011-04-20

6 2 W 89th St 2009-09-11

7 50 Fairbanks Ct 2012-05-01



 Christopher Lee 10

ifst_id bridge_id

1 1

6 2

Infrastructure_Bridges Table

CREATE TABLE IF NOT EXISTS infrastructure_bridges (
    ifst_id INTEGER NOT NULL,
    bridge_id INTEGER NOT NULL,
    PRIMARY KEY (ifst_id, bridge_id),
    FOREIGN KEY (ifst_id) REFERENCES infrastructure(ifst_id),
    FOREIGN KEY (bridge_id) REFERENCES bridges(bridge_id)
);

Functional Dependencies
ifst_id, bridge_id ->



 Christopher Lee 11

ifst_id tlight_id

2 1

5 2

Infrastructure_Traffic_Lights Table

CREATE TABLE IF NOT EXISTS infrastructure_traffic_lights (
    ifst_id INTEGER NOT NULL,
    tlight_id INTEGER NOT NULL,
    PRIMARY KEY (ifst_id, tlight_id),
    FOREIGN KEY (ifst_id) REFERENCES infrastructure(ifst_id),
    FOREIGN KEY (tlight_id) REFERENCES traffic_lights(tlight_id)
);

Functional Dependencies
ifst_id, tlight_id ->



 Christopher Lee 12

ifst_id cam_id

4 1

Infrastructure_Security_Cameras Table

CREATE TABLE IF NOT EXISTS infrastructure_security_cameras (
    ifst_id INTEGER NOT NULL,
    cam_id INTEGER NOT NULL,
    PRIMARY KEY (ifst_id, cam_id),
    FOREIGN KEY (ifst_id) REFERENCES infrastructure(ifst_id),
    FOREIGN KEY (cam_id) REFERENCES security_cameras(cam_id)
);

Functional Dependencies
ifst_id, cam_id ->



 Christopher Lee 13

ifst_id transformer_id

3 1

7 2

Infrastructure_Transformers Table

CREATE TABLE IF NOT EXISTS infrastructure_transformers (
    ifst_id INTEGER NOT NULL,
    transformer_id INTEGER NOT NULL,
    PRIMARY KEY (ifst_id, transformer_id),
    FOREIGN KEY (ifst_id) REFERENCES infrastructure(ifst_id),
    FOREIGN KEY (transformer_id) REFERENCES transformers(transformer_id)
);

Functional Dependencies
ifst_id, transformer_id ->



 Christopher Lee 14

transport_id type description

1 Bus

2 Subway Irving Park - Belmont

3 Ferry

4 Bus

5 Bus

6 Subway Racine – Forest Park

Transportation Table: Stores valid, unique identification numbers for the city's various 
transportation such as subway, ferry and buses.

CREATE TABLE IF NOT EXISTS transportation (
    transport_id SERIAL NOT NULL UNIQUE,
    type VARCHAR(25) NOT NULL,
    description VARCHAR(50),
    PRIMARY KEY (transport_id)
);

Functional Dependencies
transport_id -> type, description



 Christopher Lee 15

Subways Table: Station determines where the subway starts and stops, route determines the 
time it takes for the subway to perform its route.

CREATE TABLE IF NOT EXISTS subways (
    subway_id SERIAL NOT NULL,
    start_station VARCHAR(50) NOT NULL,
    end_station VARCHAR(50) NOT NULL,
    start_time TIME NOT NULL,
    end_time TIME NOT NULL,
    frequency VARCHAR(50) NOT NULL,
    PRIMARY KEY (subway_id)
);

Functional Dependencies
subway_id -> start_station, end_station, start_time, end_time, frequency 

subway_id start_station end_station start_time end_time frequency

1 O'Hare Logan Square 08:00:00 10:00:00 15 min

2 Irving Park Belmont 09:00:00 10:00:00 12 min

3 Montrose Jackson 07:00:00 11:00:00 18 min

4 Logan Square Racine 11:00:00 14:00:00 13 min

5 Jackson Harlem 12:30:00 15:00:00 16 min

6 Racine Forest Park 16:00:00 19:00:00 17 min



 Christopher Lee 16

Buses Table: In addition to the hours of operation, route also covers the frequency of buses.

CREATE TABLE IF NOT EXISTS buses (
    bus_id SERIAL NOT NULL,
    start_station VARCHAR(50) NOT NULL,
    end_station VARCHAR(50) NOT NULL,
    start_time TIME NOT NULL,
    end_time TIME NOT NULL,
    frequency VARCHAR(50) NOT NULL,
    day VARCHAR(25) NOT NULL,
    PRIMARY KEY (bus_id)
);

Functional Dependencies
bus_id -> start_station, end_station, start_time, end_time, frequency, day 

bus_id start_station end_station start_time end_time frequency day

1 Indiana/35th Union Station 05:40:00 21:00:00 27 min Weekdays

2 St. Lawrence Fairbanks 04:45:00 23:05:00 15 min Weekdays

3 South Shore Wacker 04:00:00 23:45:00 20 min Weekdays

4 South Shore Wacker 04:45:00 00:05:00 22 min Saturday

5 Harrison Michigan 06:10:00 22:05:00 10 min Weekdays

6 Halstead Broadway 04:05:00 00:30:00 12 min Sunday



 Christopher Lee 17

Ferries Table: Ferry stations are denominated by direction.

CREATE TABLE IF NOT EXISTS ferries (
    ferry_id SERIAL NOT NULL,
    start_station VARCHAR(50) NOT NULL,
    end_station VARCHAR(50) NOT NULL,
    frequency VARCHAR(50) NOT NULL,
    PRIMARY KEY (ferry_id)
);

Functional Dependencies
ferry_id -> start_station, end_station, frequency 

ferry_id start_station end_station frequency

1 Belfast Harlem 20 min

2 Boruch Radon 30 min

3 Harlem Belfast 35 min

4 East Side Grant 25 min

5 East Side West Side 27 min

6 Radon Boruch 32 min



 Christopher Lee 18

Transport_Subways Table

CREATE TABLE IF NOT EXISTS transport_subways (
    transport_id INTEGER NOT NULL,
    subway_id INTEGER NOT NULL,
    PRIMARY KEY (transport_id, subway_id),
    FOREIGN KEY (transport_id) REFERENCES transportation(transport_id),
    FOREIGN KEY (subway_id) REFERENCES subways(subway_id)
);

Functional Dependencies
transport_id, subway_id -> 

transport_id subway_id

2 1

6 2



 Christopher Lee 19

Transport_Buses Table

CREATE TABLE IF NOT EXISTS transport_buses (
    transport_id INTEGER NOT NULL,
    bus_id INTEGER NOT NULL,
    PRIMARY KEY (transport_id, bus_id),
    FOREIGN KEY (transport_id) REFERENCES transportation(transport_id),
    FOREIGN KEY (bus_id) REFERENCES buses(bus_id)
);

Functional Dependencies
transport_id, bus_id ->

transport_id bus_id

1 1

4 2

5 3



 Christopher Lee 20

Transport_Ferries Table

CREATE TABLE IF NOT EXISTS transport_ferries (
    transport_id INTEGER NOT NULL,
    ferry_id INTEGER NOT NULL,
    PRIMARY KEY (transport_id, ferry_id),
    FOREIGN KEY (transport_id) REFERENCES transportation(transport_id),
    FOREIGN KEY (ferry_id) REFERENCES ferries(ferry_id)
);

Functional Dependencies
transport_id, ferry_id ->

transport_id ferry_id

3 1



 Christopher Lee 21

ifst_id person_id transport_id

1 1 1

2 2 2

Central_OS Table: This table is, at its most basic purpose, meant to record all unique ids in one 
place.  

CREATE TABLE IF NOT EXISTS central_os (
    ifst_id INTEGER NOT NULL,
    person_id INTEGER NOT NULL,
    transport_id INTEGER NOT NULL,
    PRIMARY KEY (ifst_id, person_id, transport_id),
    FOREIGN KEY (ifst_id) REFERENCES infrastructure(ifst_id),
    FOREIGN KEY (person_id) REFERENCES profiler(person_id),
    FOREIGN KEY (transport_id) REFERENCES transportation(transport_id)
);

Functional Dependencies
ifst_id, person_id, transport_id ->



 Christopher Lee 22

Profiler Table: The ctOS Profiler tracks people and keeps records of personal information.

CREATE TABLE IF NOT EXISTS profiler (
    person_id SERIAL NOT NULL,
    first_name VARCHAR(50) NOT NULL,
    middle_name VARCHAR(50),
    last_name VARCHAR(50) NOT NULL,
    birth_date DATE NOT NULL,
    gender CHAR(1) NOT NULL,
    address VARCHAR(50) NOT NULL,
    phone_number CHAR(15) NOT NULL,
    email CHAR(256) NOT NULL,
    eye_color VARCHAR(25) NOT NULL,
    hair_color VARCHAR(25) NOT NULL,
    CONSTRAINT valid_gender CHECK (gender = 'M' OR gender = 'F'),
    PRIMARY KEY (person_id)
);

Functional Dependencies
person_id -> first_name, middle_name, last_name, birth_date, gender, address, 
phone_number, email, eye_color, hair_color

Sample table on next page → 



 Christopher Lee 23

person_
id

first_
name

middle_na
me

last_name birth_
date

gender address phone_n
umber

email eye_color hair_
color

1 Bob Randal Tarly 1989-
04-20

M 123 Kenny 
Ln

312-
483-
2035

bob_tarly@
icloud.com

Blue Blonde

2 Frank Underwood 1956-
08-25

M 426 Rook 
St

312-
928-
3058

funderwood@
gmail.com

Black Brown

3 Jaime Lannister 1967-
09-11

M 1 Casterly 
Rock Rd

312-
312-
3120

kingslayer@
hotmail.com

Green Blonde

4 Grace Rose Kelly 1990-
07-16

F 92 Flower 
Ln

312-
213-
9999

grace_kelly@
gmail.com

Gray White

5 Eileen Calvin Hobbes 1970-
01-01

F 172 Brooks 
Rd

312-
183-
5720

calvin_hobbe
s@
gmail.com

Black Black

6 Rhodes Rodney 1930-
02-15

M 304 56th St 572-
381-
3957

rrodney12@
hotmail.com

Brown Brown

7 Susan Dumont Morgan 1948-
03-10

F 95 Flower 
Ln

572-
395-
2934

susan_morgan
@
gmail.com

Pale Red

8 Cercei Baratheon 1975-
12-25

F 1 King's 
Landing Rd

312-
304-
2950

stupid_queen
@
gmail.com

Green Blonde

9 Jon Snow 1982-
09-09

M 1 Knows 
Nothing Rd

312-
304-
5820

clueless@
hotmail.com

Black Black



 Christopher Lee 24

person_id hire_date year_wages_usd

3 2002-02-05 42000

7 2009-04-20 92000

9 2000-01-17 50000

Employees Table

CREATE TABLE IF NOT EXISTS employees (
    person_id INTEGER NOT NULL,
    hire_date DATE NOT NULL DEFAULT CURRENT_TIMESTAMP,
    year_wages_usd MONEY NOT NULL,
    PRIMARY KEY (person_id),
    FOREIGN KEY (person_id) REFERENCES Profiler(person_id)
);

Functional Dependencies
person_id -> hire_date, year_wages_usd 



 Christopher Lee 25

person_id hire_date contract_length pay

1 2001-07-08 16 months 42000

3 2008-02-16 18 months 50000

8 2010-10-01 6 months 20000

Affiliates Table: Not to be confused with Blume employees, affiliates are people such as 
temporary contractors or other such people with temporary connections to Blume.

CREATE TABLE IF NOT EXISTS affiliates (
    person_id INTEGER NOT NULL,
    hire_date DATE NOT NULL DEFAULT CURRENT_TIMESTAMP,
    contract_length VARCHAR(25) NOT NULL,
    pay MONEY NOT NULL,
    PRIMARY KEY (person_id),
    FOREIGN KEY (person_id) REFERENCES Profiler(person_id)
);

Functional Dependencies
person_id -> hire_date, contract_length, pay



 Christopher Lee 26

EmployeeInformation View: This view keeps track of every Blume employee's important 
contact information all in one view display, specifically: full name, phone number, e-mail, hire date, 
and salary. 

CREATE OR REPLACE VIEW employeeInformation AS
    SELECT p.first_name,
           p.middle_name,
           p.last_name,
           p.phone_number,
           p.email,
           e.hire_date,
           e.year_wages_usd
    FROM   profiler p,
           employees e
    WHERE  p.person_id = e.person_id
    ORDER BY p.last_name DESC



 Christopher Lee 27

AffiliateInformation View: This view keeps track of every Blume affiliate's important contact 
information all in one view display, specifically: full name, phone number, e-mail, hire date, contract 
length and salary. 

CREATE OR REPLACE VIEW affiliateInformation AS
    SELECT p.person_id AS Employee ID,
           p.first_name,
           p.middle_name,
           p.last_name,
           p.phone_number,
           p.email,
           a.hire_date,
           a.contract_length,
           a.pay
    FROM   profiler p,
           affiliates a
    WHERE  p.person_id = a.person_id
    ORDER BY p.last_name DESC



 Christopher Lee 28

TLight_Maintain View: Traffic lights, electricity transformers and security cameras all need regular 
maintenance. This view keeps track of the traffic light or transformer that needs the most attention (has the 
oldest last maintained date).

CREATE OR REPLACE VIEW tlight_maintain AS
    SELECT t.tlight_id,
           t.location,
           t.last_maintained
    FROM   traffic_lights t
    ORDER BY t.last_maintained ASC

Transformer_Maintain

CREATE OR REPLACE VIEW transformer_maintain AS
    SELECT t.transformer_id,
           t.location,
           t.last_maintained
    FROM   transformers t
    ORDER BY t.last_maintained ASC

Cam_Maintain

CREATE OR REPLACE VIEW cam_maintain AS
    SELECT s.cam_id,
           s.location,
           s.last_maintained
    FROM   security_cameras s
    ORDER BY s.last_maintained ASC



 Christopher Lee 29

Reports and Queries

Average Bridge Daily Traffic: When the traffic load on bridges is especially high on a certain 
day, this query can be used to find the total average daily traffic in order to manipulate traffic into 
using certain bridges over others.

SELECT b.bridge_id AS BridgeID,
       b.name AS Name,
       avg(b.daily_traffic) AS Avg_Daily_Traffic
FROM   bridges b
WHERE  b.daily_traffic IS NOT NULL
GROUP BY b.bridge_id;

Affiliate Financial Planning: Blume Corporation hires many affiliates and independent 
contractors, and the finances to hire and train them (if necessary) must be kept track of at all times. 

SELECT a.contract_length * a.pay AS Financial_Cost,
       p.first_name,
       p.middle_name,
       p.last_name
FROM   affiliates a,
       profiler p
WHERE  a.person_id = p.person_id
GROUP BY Financial_Cost;



 Christopher Lee 30

Population Percentage: For managing censuses and keeping track of population percentages, 
this query returns the percentage of people under 21. 

SELECT TRUNC (
          CAST (
                 (SELECT COUNT(person_id) as count
                   FROM Profiler
                   WHERE date_part('year', age( Profiler.birth_date )) < 21
                 ) as decimal(5, 2)
               ) / (SELECT COUNT(person_id) as total
                     FROM Profiler
                   ) * 100
             ) as Underage
 



 Christopher Lee 31

Stored Procedures

Potential Criminal Search: Given a set of physical attributes such as eye color, hair color and 
gender, the Profiler can access all the citizens in Chicago as an initial step to find a potential criminal.

CREATE OR REPLACE FUNCTION potential_crime(eye_color text, hair_color text, 
gender CHAR(1))
RETURNS TABLE(First_Name text, Middle_Name text, Last_Name text) AS 
$BODY$
BEGIN
    SELECT DISTINCT p.first_name, p.middle_name, p.last_name
    FROM Profiler p
    WHERE eye_color = p.eye_color
          AND hair_color = p.hair_color
          AND gender = p.gender
END;
$BODY$ 
LANGUAGE plpgsql;



 Christopher Lee 32

New Employee Hire: While all citizens are automatically tracked and registered by the ctOS 
Profiler, new employee and affiliate hires must be managed by the database separately.

CREATE OR REPLACE FUNCTION new_employee()
RETURNS trigger AS $$
BEGIN
    IF NEW.is_employee = true THEN
        INSERT INTO Employees VALUES(NEW.person_id, NEW.hire_date,              

NEW.year_wages_usd);
    END IF;
    RETURN NEW;
END;
$$ LANGUAGE plpgsql

New Affiliate Hire

CREATE OR REPLACE FUNCTION new_affiliate()
RETURNS trigger AS $$
BEGIN
    IF NEW.is_affilaite = true THEN 
        INSERT INTO Affiliates VALUES(NEW.person_id, NEW.hire_date, 

 NEW.contract_length, NEW.pay);
    END IF;
    RETURN NEW;
END;
$$ LANGUAGE plpgsql



 Christopher Lee 33

Triggers

New Employee: This example triggers on a new entry being created for a Blume employee who 
recently moved to Chicago and a new entry must be created in the Profiler.

CREATE TRIGGER add_employee
AFTER INSERT OR UPDATE ON Profiler
FOR EACH ROW
EXECUTE PROCEDURE new_employee();

New Affiliate

CREATE TRIGGER add_affiliate
AFTER INSERT OR UPDATE ON Profiler
FOR EACH ROW
EXECUTE PROCEDURE new_affiliate();



 Christopher Lee 34

Security

Admin: High ranking officials; access to the entire ctOS database.

CREATE ROLE admin;
GRANT ALL ON ALL TABLES
IN SCHEMA PUBLIC
TO admin;

Infrastructure Management Employee: Employees working in the infrastructure department 
have access to areas of infrastructure only: broadly speaking, this includes security cameras, electric 
transformers, bridges, and traffic lights. 

CREATE ROLE ifst_employee;
GRANT SELECT, INSERT, UPDATE ON infrastructure, security_cameras, transformers, 
bridges, traffic_lights, infrastructure_security_cameras, 
infrastructure_transformers, infrastructure_bridges, 
infrastructure_traffic_lights
TO ifst_employee;



 Christopher Lee 35

Transportation Management Employee: Employees working in the transportation 
department have access to areas of transportation only: broadly speaking, this includes buses, 
ferries, and subways. 

CREATE ROLE trans_employee;
GRANT SELECT, INSERT, UPDATE ON transportation, buses, ferries, subways, 
transport_buses, transport_ferries, transport_subways
TO trans_employee;

Profiler Management Employee: Employees working in the ctOS Profiler department have 
access to the profiler and central OS databases for tracking and recording people.

CREATE ROLE profiler_employee;
GRANT SELECT, INSERT, UPDATE ON profiler, central_os
TO profiler_employee;

Affiliates are given similar access permissions, but without INSERT and UPDATE, as those actions 
are reserved for authorized Blume employees only. The example below shows the permissions for a 
bridge planner affiliate.

CREATE ROLE bridge_affiliate;
GRANT SELECT ON infrastructure, bridges, infrastructure_bridges
TO bridge_affiliate;



 Christopher Lee 36

Implementation Notes, Known Problems & Future Enhancements

This database is meant to be an information storage system for an operating system that controls 
and manages an entire city of millions of people. As a result, this database is in its early, simplest 
form.

● In the game Watch_Dogs, ctOS is capable of tracking any device capable of connecting to the 
Internet or any local networks existing in the city of Chicago.

● This includes devices such as laptops, cellphones, smart watches, even satellites overlooking 
the city of Chicago.

● As a result, improvements to this database system would include coverage of all these devices 
with unique identification as well as supplementary information.

The Profiler is capable of keeping a “relationship network” between every citizen in the city, allowing 
for advanced uses such as searches for potential criminals or even predicting crime (by tracking 
conversations and text messages on phones and computers). 

● Future implementations would possibly use Social Security Numbers as unique identification, or 
use it alongside the current person_id.

● Addition of GPS with the use of locational coordinates would allow ctOS to keep track of every 
person through the use of Internet-enabled devices.

Finally, this operating system and database system is limited to Chicago only (at the moment). The 
most significant future enhancement would be to apply this system to every major city and eventually 
every city in the world for a global system. Obviously, there will be ethical and moral considerations 
to take into account, but that is not the purpose of this proposal.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

